Robo6log.ru

Финансовый обозреватель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гармонический анализ это

Для чего нужен гармонический анализ? Основные расчетные формулы. Интерпретация полученных результатов. Как при помощи гармонического анализа можно выполнить фильтрацию временного ряда

Многие природные процессы являются периодическими, т.е. воспроизводятся в прежнем виде через определенный промежуток времени Т (смена времен года, смена дня и ночи, продолжительность светового дня и т.д.). С точки зрения математики, различные величины, связанные с рассматриваемыми периодическими процессами, по истечение периода Т возвращаются к своим прежним значениям и являются периодическими функциями от времени t:

Гармонический анализ – это процесс разложения периодической функции в ряд Фурье (на гармоники). Гармоника (гармонические составляющие функции f(t)) – отдельные синусоидальные величины, входящие в состав тригонометрического ряда. Ибо периодическая функция f(t) периода Т (при этом составляющие синусоидальные величины разных частот) может быть представлена в виде суммы конечного или бесконечного множества синусоид. Интерпретация полученных результатов: с помощью гармонического анализа можно выделить низко-, средне- и высокочастотные колебания, а также оценить вклад отдельных гармоник в исследуемый процесс.

Задача гармонического анализа заключается в построении практически удобных методов для приближенного определения коэффициентов ряда Фурье или для непосредственного вычерчивания гармоник различных порядков для функции, заданной таблично. По этим коэффициентам можно судить о вкладе отдельных гармоник: если k≈0, то вклад гармоник минимальный, а если k≈1, то это основные гармоники. По ним можно составлять гипотезы и процессооформирующих явлениях.

Пусть ф-ия f(x) – периодическая с периодом 2π: f(x+2π)=f(x). Основная задача гармонического анализа – представить ф-цию f(x) в виде ряда: , где коэф. ряда определяется по формулам Эйлера-Фурье: ; ;

Полагая что , , ряд можно представить в виде: , где — амплитуда гармоники, — фаза

Ряд Фурье и гармонический анализ позволяют выполнить фильтрацию временного ряда. Напр.:

*Если обнулить n-компонент (с низкими частотами), то это высокочастотная фильтрация;

*Если удалить все компоненты с какой-то высокой частотой, то это будет низкочастотная фильтрация;

*Обнулив компонент со значениями частот «от и до» — полосовая фильтрация.

Иногда фильтрация с пропусканием высоких частот производится путем вычитания сглаженных величин из данного ряда, в рез-те в ряду остаются только высокие частоты.

1)Фильтрация низких и высоких частот, в рез-те чего в ряду остаются средние частоты. Иногда эти частоты получаются путем дополнительного сглаживания ряда данных, полученных путем вычитания первоначального сглаживания величин из экспериментального ряда.

2)Существуют фильтры позволяющие усилить высокие частоты. Этим достигается ликвидация эффекта предыдущего сглаживания (процесс «обратного сглаживания»).

Простейшими фильтрами являются скользящая средняя и взвешенная скользящая средняя.

Для чего необходимо осреднение? Основные расчетные формулы метода скользящего среднего и экспоненциального сглаживания. Интерпретация полученных результатов. Достоинства и недостатки данных двух методов

Осреднение необходимо для исключения влияния на анализ флуктуаций – короткопериодические колебания, медленные постепенные изменения случайной переменной в течение всего анализируемого периода и колебания, хар-ся промежуточным временным масштабом.

Метод скользящей средней заключается в том, что для каждого аргумента берется средняя арифметическая на несколько соседних значениях функции.

, т.е. ;

Пропадут первые v-точки и последние v-точки: 2v-точки.

Применяют для длинных рядов, где пропажа двух крайних 2v-точек ничего не решает. Характерно для физ.-географов и не характерно для эконом.географов, которые работают с небольшими рядами. Многоцелевой, легко программируемый метод, однако велика вероятность неточности.

Метод взвешенной скользящей средней является более точным, т.к. не связан с потерей крайних значений. Для этих целей добавляют с обеих концов ряда по два члена, расчет производится по формуле:

Метод экспоненциального сглаживания. Пусть есть некоторый ряд , где i=1,2. n. Тогда расчетные формулы имеют вид:

0,1-0,3 (т.е. берут значение в этом пределе) Чем меньше α, тем больше степень осреднения

Его преимущества заключаются в простоте вычислений, гибкости описаний динамик процессов. Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, хар-щих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Наибольшее применение метод нашел для коротких рядов в геоэкологии и эконом.географии. Для метода экспоненциального сглаживания основным и наиболее трудным моментом является выбор параметра сглаживания α и начальных условий.

Интерпретация полученных результатов: воспользовавшись рассмотренными методами, мы сократили, сжали набор полученных результатов и осреднили их, что избавило нас от ряда процессов обработки не столь важных результатов. (например, для оценки численности населения не так важно знать его каждодневное количество)

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Гармонический анализ

Ряды и интегралы Фурье

Руководитель диспетчерской службы М.А. Кузьмина

Начальник учебно-методического управления М.Ю. Харитонов

Декан факультета А.П. Данилов

В теории и практике автоматического регулирования часто встречаются процессы, которые могут рассматриваться как периодические.

Функция f (t) называется периодической функцией, если при некотором постоянном числе Т>0, выполняется равенство

где Т – период функции;

n – любое целое число, положительное или отрицательное, а аргумент t принимаем значения из области определения функции.

Периодическая функция f (t) cпериодом Т обладает свойством, состоящем в том, что

Косинусоидальный (или синусоидальный) гармонический колебательный процесс

является примером простейшей периодической функции. Эта функция называется гармонической с амплитудой А, угловой частотой w и начальной фазой j. Нетрудно убедиться,

Читать еще:  План факторный анализ

что гармоника имеет период T=2p/w. В самом деле

т.е. равенство (1) выполняется.

Сложение гармоник с различными частотами w, 2w, 3w, кратными наименьшей из них w приводит к образованию периодической функции с периодом T=2p/w равным периоду первой гармоники с частотой w. Эта функция отличается от гармоник. Каждое из слагаемых функции может характеризовать, например, косинусоидальное колебание, однако их сумма не является косинусоидой. Ещё более будет отличаться от косинусоиды график функции

представляющий собой сумму бесконечного ряда.

В дальнейшем приращение частоты при переходе от гармоники с номером k к соседней с номером k+1 будем обозначать Dw. Тогда частоту первой гармоники также следует обозначить Dw, т.е. Dw = 2p/T, где T – период функции f(t). Тогда

Общий член ряда (3)

Ak cos(kDwt-jk) – называется k –й гармоникой, частота k –й гармоники kDw, кратна частоте первой гармоники Dw.

Всякую ли заданную периодическую функцию f(t) можно представить в виде суммы гармонических составляющих, т. е. произвести её тригонометрическое разложение. Как найти неизвестные параметры каждой из гармоник разложения. Покажем, что периодические функции, принадлежащие весьма обширному классу функций, могут быть представлены в виде (3).

Допускается существование нулевой гармоники А. Функцию f(t) с периодом Т можно записать в виде:

Если учесть, что

и ввести обозначения

и (4) можно записать в более удобном виде:

Периодическая функция f(t), имеющая период Т, оказывается разложенной по косинусам и синусам углов, кратных углу Dwt.

Если период функции f(t) T=2p, то Dw=2p/T=1, тогда

Пусть функция f(t) имеет период, равный 2p, ипринадлежитк классу функций, для которых разложение существует. Определим неизвестные постоянные коэффициенты разложения (6) a, ak, bk (k=1,2,…).

Предварительно отметим свойство семейства функций

1, cos t, sin t, cos 2t, sin 2t … cos nt, sin nt…,

состоящее в том , что интеграл от произведения любых двух функций этого семейства на интервале, имеющем длину 2p равен нулю независимо от выбора нижнего предела интегрирования – свойство ортогональности на интервале длиной 2p.

Найдём коэффициент a. Предполагая, что ряд (6) является равномерно сходящимся,

проинтегрируем этот ряд почленно от —p до +p.

Заменим интеграл от бесконечной суммы, суммой интегралов от отдельных слагаемых (это возможно благодаря равномерной сходимости ряда (6)), тогда

т.к. все интегралы под знаком суммы равны нулю.

Определим коэффициенты ak и bk. Для этого умножим обе части (6) на cos(nt) , где n – целое положительное число, и проинтегрируем в пределах от -p до p

Первое слагаемое в правой части, а также те, в которых n ≠ k, из – за ортогональности семейства, обращаются в ноль т.е.

Аналогично, умножая (6) на sin(nt), после интегрирования получим

Формулы (7),(8) и (9) позволяют по заданной f(t) c периодом 2π найти коэффициенты разложения этой функции в тригонометрический ряд (6) называемый рядом Фурье. Коэффициенты ak и bk называют коэффициентами Фурье.

Если функция f(t) четная на интервале (-π; π), то произведение f(t)cos(kt) представляет собой четную функцию, а f(t)sin(kt) – нечетную. В этом случае bk=0, а коэффициенты a и ak определяются по формулам

Если функция f(t) нечетная на интервале (-π; π), то f(t)cos(kt)- нечетная функция, а f(t)sin(kt) – четная. В этом случае a=0, ak=0, а bk может быть определен по формуле

В формулах (7) –(9) интегрирование производилось на интервале (-π ; π ). Однако результат не изменится, если проводить интегрирование на каком либо другом интервале длиной 2π, например на интервале (0; 2π)

Зная ak и bk легко определить амплитуду и начальную фазу k –й гармоники

Совокупность операций, в результате которых могут быть определены гармоники периодической функции f(t), называется гармоническим анализом.

Пример. Разложить на сумму гармонических составляющих прямоугольную волну, определяемую функцией:

Полагая, что заданная функция допускает разложение её в ряд Фурье, определим коэффициенты a, ak и bk. Т.к. f(t) – нечетная, то a0=ak=0. Определим коэффициент bk, применяя формулу(12):

Амплитуда первой гармоники A1=4a/π, а частота ∆ω=1*(1/c), амплитуда второй равна нулю, третьей A3=4a/3π, а частота 3∆ω=3*(1/c) и.т.д. Значения начальных фаз для всех гармоник разложения φk=π/2, arctg(bk/ak)=arctg ∞=π/2.

Пусть функция f(t) задана на интервале (-π; π) и допускает разложение в ряд Фурье. Это значит, что ряд (6) с коэффициентами, определенными по (7) –(9) сходятся к f(t). При этом f(t) может быть непериодической. Разложение подобной функции в ряд Фурье на интервале (-π; π) означает, что f(t) периодически продолжена вне интервала (-π; π) на всю ось 0t . На интервале (-π; π) эта новая функция совпадает с f(t). Ряд Фурье для непериодической функции f(t) заданной в интервале (-π; π) совпадает с рядом Фурье для функции периодически продолженной на всю ось 0t.

Вопросы сходимости не рассматриваем.

Результаты разложения на сумму гармонических составляющих функции f(t), имеющей период 2π, распространим на периодические функции с периодом отличным от 2π .Разложим в тригонометрический ряд функцию f(t) периода Т. Опуская выкладки, получим (вводя новую переменнуюи переходя к старой)

Запишем тригонометричесеий ряд (5) в комплексной форме. Используя формулу Эйлера

Обозначив С=a/2, получим для функции f(t), заданной в интервале (-T/2, T/2), ряд Фурье (5) в комплексной форме:

Читать еще:  Регрессионный анализ в маркетинге

Здесь, как и ранее ∆ω=2π/T – частота первой гармоники

сk – комплексные коэффициенты разложения f(t) в раз.

e jk∆ωt — комплексная гармоника.

Так как 2ck=ak-jbk , то, принимая во внимание, что комплексное число Z может быть представлено в виде:

Z=r e jφ , и равенство (13) найдём:

Величину Ck=2ck называют комплексной амплитудой k – ой гармоники. Очевидно, что Ak=2│ck│. Формулу (17) удобнее записывать в виде:

– относительная комплексная амплитуда k – ой гармоники.

Неизвестные коэффициенты в разложении (17) определяются по формуле:

а F(jk∆ω) с учётом (*)

В формуле (17) суммирование производится как по положительным, так и по отрицательным значениям k. Таким образом, комплексная форма ряда Фурье допускает существование и положительных и отрицательных частот ω=k∆ω. Однако после суммирования комплексных слагаемых останутся несколько вещественные величины, так как комплексные коэффициенты ck и c-k являются сопряженными.

ГАРМОНИЧЕСКИЙ АНАЛИЗ

представление сложного негармонич. колебания в виде суммы гармонических колебании, образующих т. н. спектр колебания. Если сложное колебание — периодич. с частотой v = 1/Т и с периодом Т, то его спектр дискретный, или линейчатый: он состоит из гармонич. колебаний с частотами, кратными v. Линейчатый спектр с некратными частотами имеют т. н. почти периодич. колебания. Непериодич. колебания имеют сплошной спектр, к-рый содержит составляющие со всевозможными частотами, непрерывно заполняющими нек-рую область частот.

Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое «ГАРМОНИЧЕСКИЙ АНАЛИЗ» в других словарях:

гармонический анализ — Анализ амплитуды, фазы (или и того, и другого) гармонических составляющих сигнала вихретокового преобразователя. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие).… … Справочник технического переводчика

ГАРМОНИЧЕСКИЙ АНАЛИЗ — раздел математики, связанный с разложением периодических процессов на простейшие гармонические составляющие гармоники … Большой Энциклопедический словарь

ГАРМОНИЧЕСКИЙ АНАЛИЗ — раздел, посвященный разложению функций в тригонометрические ряды и интегралы (см. Фурье преобразование, Фурье ряд). Применяется в геологии с 1938 г. для исследования свойств отл. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н.… … Геологическая энциклопедия

Гармонический анализ — (или Фурье анализ) раздел математики, в котором изучаются свойства функций с помощью представления их в виде рядов или интегралов Фурье. Также метод решения задач с помощью представления функций в виде рядов или интегралов Фурье. Литература … Википедия

ГАРМОНИЧЕСКИЙ АНАЛИЗ — название раздела математики и математич. метода. В Г. а. как раздел математики обычно включают: теорию тригонометрических рядов (одномерных и многомерных), Фурье преобразований (функций одного и нескольких переменных), почти периодических функций … Математическая энциклопедия

гармонический анализ — раздел математики, связанный с разложением периодических процессов на простейшие гармонические составляющие гармоники. * * * ГАРМОНИЧЕСКИЙ АНАЛИЗ ГАРМОНИЧЕСКИЙ АНАЛИЗ, раздел математики, связанный с разложением периодических процессов на… … Энциклопедический словарь

гармонический анализ — harmoninė analizė statusas T sritis automatika atitikmenys: angl. harmonic test; harmonical analysis vok. Ermittlung der Harmonischen, f; Ermittlung des Oberschwingungsgehaltes, f; harmonische Analyse, f rus. гармонический анализ, m pranc.… … Automatikos terminų žodynas

гармонический анализ — harmoninė analizė statusas T sritis fizika atitikmenys: angl. harmonic analysis; harmonical analysis vok. harmonische Analyse, f rus. гармонический анализ, m pranc. analyse harmonique, f … Fizikos terminų žodynas

ГАРМОНИЧЕСКИЙ АНАЛИЗ — Анализ сложной волны по ее синусоидным: и косинусоидным компонентам, согласно закону Фурье … Толковый словарь по психологии

Гармонический анализ — отдел математики, связанный с разложением колебаний на Гармонические колебания. При изучении периодических (т. е. повторяющихся во времени) явлений рассматриваются периодические функции (См. Периодическая функция). Например, гармоническое … Большая советская энциклопедия

Гармонический анализ

Ряды и интегралы Фурье

Руководитель диспетчерской службы М.А. Кузьмина

Начальник учебно-методического управления М.Ю. Харитонов

Декан факультета А.П. Данилов

В теории и практике автоматического регулирования часто встречаются процессы, которые могут рассматриваться как периодические.

Функция f (t) называется периодической функцией, если при некотором постоянном числе Т>0, выполняется равенство

где Т – период функции;

n – любое целое число, положительное или отрицательное, а аргумент t принимаем значения из области определения функции.

Периодическая функция f (t) cпериодом Т обладает свойством, состоящем в том, что

Косинусоидальный (или синусоидальный) гармонический колебательный процесс

является примером простейшей периодической функции. Эта функция называется гармонической с амплитудой А, угловой частотой w и начальной фазой j. Нетрудно убедиться,

что гармоника имеет период T=2p/w. В самом деле

т.е. равенство (1) выполняется.

Сложение гармоник с различными частотами w, 2w, 3w, кратными наименьшей из них w приводит к образованию периодической функции с периодом T=2p/w равным периоду первой гармоники с частотой w. Эта функция отличается от гармоник. Каждое из слагаемых функции может характеризовать, например, косинусоидальное колебание, однако их сумма не является косинусоидой. Ещё более будет отличаться от косинусоиды график функции

представляющий собой сумму бесконечного ряда.

В дальнейшем приращение частоты при переходе от гармоники с номером k к соседней с номером k+1 будем обозначать Dw. Тогда частоту первой гармоники также следует обозначить Dw, т.е. Dw = 2p/T, где T – период функции f(t). Тогда

Общий член ряда (3)

Ak cos(kDwt-jk) – называется k –й гармоникой, частота k –й гармоники kDw, кратна частоте первой гармоники Dw.

Читать еще:  Анализ организационной культуры

Всякую ли заданную периодическую функцию f(t) можно представить в виде суммы гармонических составляющих, т. е. произвести её тригонометрическое разложение. Как найти неизвестные параметры каждой из гармоник разложения. Покажем, что периодические функции, принадлежащие весьма обширному классу функций, могут быть представлены в виде (3).

Допускается существование нулевой гармоники А. Функцию f(t) с периодом Т можно записать в виде:

Если учесть, что

и ввести обозначения

и (4) можно записать в более удобном виде:

Периодическая функция f(t), имеющая период Т, оказывается разложенной по косинусам и синусам углов, кратных углу Dwt.

Если период функции f(t) T=2p, то Dw=2p/T=1, тогда

Пусть функция f(t) имеет период, равный 2p, ипринадлежитк классу функций, для которых разложение существует. Определим неизвестные постоянные коэффициенты разложения (6) a, ak, bk (k=1,2,…).

Предварительно отметим свойство семейства функций

1, cos t, sin t, cos 2t, sin 2t … cos nt, sin nt…,

состоящее в том , что интеграл от произведения любых двух функций этого семейства на интервале, имеющем длину 2p равен нулю независимо от выбора нижнего предела интегрирования – свойство ортогональности на интервале длиной 2p.

Найдём коэффициент a. Предполагая, что ряд (6) является равномерно сходящимся,

проинтегрируем этот ряд почленно от —p до +p.

Заменим интеграл от бесконечной суммы, суммой интегралов от отдельных слагаемых (это возможно благодаря равномерной сходимости ряда (6)), тогда

т.к. все интегралы под знаком суммы равны нулю.

Определим коэффициенты ak и bk. Для этого умножим обе части (6) на cos(nt) , где n – целое положительное число, и проинтегрируем в пределах от -p до p

Первое слагаемое в правой части, а также те, в которых n ≠ k, из – за ортогональности семейства, обращаются в ноль т.е.

Аналогично, умножая (6) на sin(nt), после интегрирования получим

Формулы (7),(8) и (9) позволяют по заданной f(t) c периодом 2π найти коэффициенты разложения этой функции в тригонометрический ряд (6) называемый рядом Фурье. Коэффициенты ak и bk называют коэффициентами Фурье.

Если функция f(t) четная на интервале (-π; π), то произведение f(t)cos(kt) представляет собой четную функцию, а f(t)sin(kt) – нечетную. В этом случае bk=0, а коэффициенты a и ak определяются по формулам

Если функция f(t) нечетная на интервале (-π; π), то f(t)cos(kt)- нечетная функция, а f(t)sin(kt) – четная. В этом случае a=0, ak=0, а bk может быть определен по формуле

В формулах (7) –(9) интегрирование производилось на интервале (-π ; π ). Однако результат не изменится, если проводить интегрирование на каком либо другом интервале длиной 2π, например на интервале (0; 2π)

Зная ak и bk легко определить амплитуду и начальную фазу k –й гармоники

Совокупность операций, в результате которых могут быть определены гармоники периодической функции f(t), называется гармоническим анализом.

Пример. Разложить на сумму гармонических составляющих прямоугольную волну, определяемую функцией:

Полагая, что заданная функция допускает разложение её в ряд Фурье, определим коэффициенты a, ak и bk. Т.к. f(t) – нечетная, то a0=ak=0. Определим коэффициент bk, применяя формулу(12):

Амплитуда первой гармоники A1=4a/π, а частота ∆ω=1*(1/c), амплитуда второй равна нулю, третьей A3=4a/3π, а частота 3∆ω=3*(1/c) и.т.д. Значения начальных фаз для всех гармоник разложения φk=π/2, arctg(bk/ak)=arctg ∞=π/2.

Пусть функция f(t) задана на интервале (-π; π) и допускает разложение в ряд Фурье. Это значит, что ряд (6) с коэффициентами, определенными по (7) –(9) сходятся к f(t). При этом f(t) может быть непериодической. Разложение подобной функции в ряд Фурье на интервале (-π; π) означает, что f(t) периодически продолжена вне интервала (-π; π) на всю ось 0t . На интервале (-π; π) эта новая функция совпадает с f(t). Ряд Фурье для непериодической функции f(t) заданной в интервале (-π; π) совпадает с рядом Фурье для функции периодически продолженной на всю ось 0t.

Вопросы сходимости не рассматриваем.

Результаты разложения на сумму гармонических составляющих функции f(t), имеющей период 2π, распространим на периодические функции с периодом отличным от 2π .Разложим в тригонометрический ряд функцию f(t) периода Т. Опуская выкладки, получим (вводя новую переменнуюи переходя к старой)

Запишем тригонометричесеий ряд (5) в комплексной форме. Используя формулу Эйлера

Обозначив С=a/2, получим для функции f(t), заданной в интервале (-T/2, T/2), ряд Фурье (5) в комплексной форме:

Здесь, как и ранее ∆ω=2π/T – частота первой гармоники

сk – комплексные коэффициенты разложения f(t) в раз.

e jk∆ωt — комплексная гармоника.

Так как 2ck=ak-jbk , то, принимая во внимание, что комплексное число Z может быть представлено в виде:

Z=r e jφ , и равенство (13) найдём:

Величину Ck=2ck называют комплексной амплитудой k – ой гармоники. Очевидно, что Ak=2│ck│. Формулу (17) удобнее записывать в виде:

– относительная комплексная амплитуда k – ой гармоники.

Неизвестные коэффициенты в разложении (17) определяются по формуле:

а F(jk∆ω) с учётом (*)

В формуле (17) суммирование производится как по положительным, так и по отрицательным значениям k. Таким образом, комплексная форма ряда Фурье допускает существование и положительных и отрицательных частот ω=k∆ω. Однако после суммирования комплексных слагаемых останутся несколько вещественные величины, так как комплексные коэффициенты ck и c-k являются сопряженными.

Ссылка на основную публикацию
Adblock
detector