Robo6log.ru

Финансовый обозреватель
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реферат экономическая оценка эффективности инвестиционных проектов

реферат Оценка эффективности инвестиционных проектов

Добавлен: 30.06.13. Год: 2011. Страниц: 10. Уникальность по antiplagiat.ru: 0 означает превышение поступления над расходом в момент tk,, при обратном соотношении Rk[?1,?2] [0, T] ),
ов).
Для оценки эффективности инвестиционного проекта используют четыре показателя, основанные на дисконтировании членов финансового потока проекта к моменту t = 0:

    чистая современная стоимость проекта (net present value, NPV);
    внутренняя норма доходности (internal rate of return, IRR);
    срок окупаемости (discounted payback period, DPP);
    индекс доходности (profitability index, PI).

Каждый из показателей – это результат сопоставления современных стоимостей инвестиций в проект и отдач от инвестиций. Для дисконтирования членов финансового потока проекта применяется процентная ставка i. Необходимо, чтобы процентная ставка и сроки платежей по проекту были согласованы между собой. Существует несколько подходов для определения ставки дисконтирования. Будем считать, что i – годовая процентная ставка, по которой инвестор мог бы дать взаймы или занять деньги. Рассмотрим определения и свойства показателей эффективности проектов с классической схемой инвестирования (сначала вложения средств, затем отдача), денежный поток которых имеет вид (6.1) или (6.2). Единица измерения времени – год.
Определение. Чистая современная стоимость проекта NPV(i) при процентной ставке i — это современная стоимость чистого денежного потока проекта по процентной ставке i.
NPV(i) проекта с дискретным потоком платежей (6.1):
NPV(i ) = . (6.3)
NPV(i) проекта с непрерывно — дискретным потоком платежей (6.2):
NPV(i ) = . (6.4)
Пример 6.1. Вычислим значения показателя NPV(i) для следующих проектов.
A (-1000, -2000, -3000, 1500 в моменты t = 0, t1 = 1, t2 = 2, t3 = 4; f(t) = 1000, 6 t 16)
при ставке дисконтирования 5 % годовых:
NPV(i) = =
= = 1513,16.
Проект B(-1000,-300,500,500,50 0,500) при ставке дисконтирования 5 % годовых:
NPV(i) = = 402,8.
Проект С(-90,30,40,40) при ставке дисконтирования 12 % годовых:
NPV(i) = = – 2,86.

Свойства и экономическое содержание NPV(i).
1) Если NPV(i) , то доходы от проекта окупают вложенные инвестиции. При NPV(i) 0 проект является прибыльным. При NPV(i) PV(r) = 0. (6.7)
Для проектов с непрерывно-дискретным и дискретным потоком платежей это уравнение имеет вид соответственно:
= 0 (6.8)
и
= 0. (6.9)
Эти выражения совпадают с уравнениями доходности денежного потока (4.11) и (4.13) в параграфе 1.4. Поэтому решение уравнения (6.7), если оно существует, называют доходностью проекта. Существование решения устанавливается теоремой 4.2. Согласно этой теореме, уравнение (6.7) для проекта классического характера, удовлетворяющего условию (или для проекта с дискретным потоком платежей), имеет единственное положительное решение. Это решение находят, используя приближенные методы, например метод линейной интерполяции (рассмотрен в параграфе 1.4, примеры 4.2, 4.4). Таким образом, решение уравнения (6.7) – это значение показателя IRR проекта. Величина IRR полностью определяется “внутренними” характеристиками самого проекта и не зависит, например, от ставки дисконтирования i. Расчет IRR часто применяют в качестве первого шага анализа инвестиций.
Пример 6.3. Значение показателя IRR проекта A(-1000, -2000, -3000, 1500 в моменты t = 0, t1 = 1, t2 = 2, t3 = 4; f(t) = 1000, 6 t 16) получено в примере 4.4 (параграф 1.4):
r 0,081884 ( 8,2 % годовых).
Значение показателя IRR проекта B(-1000,-300,500,500,50 0,500) находим из уравнения доходности:
= 0.
Методом линейной интерполяции определяем
r 0,14425 ( 14,43 % годовых).
Для проекта С(-90,30,40,40) уравнение доходности имеет вид:
= 0.
Методом линейной интерполяции находим
r 0,10230 ( 10,23 % годовых).

Читать еще:  Сталь китай инвестинг

Свойства и экономическое содержание внутренней нормы доходности.
1) При ставке дисконтирования, равной IRR, инвестиционные вложения в точности окупаются доходами, но не приносят прибыль. Действительно, как следует из свойств чистой современной стоимости проекта, равенство NPV(r) = 0 означает, что при ставке дисконтирования, равной IRR, проект ни прибыльный, ни убыточный.
Уравнения (6.8) и (6.9) можно записать иначе:
(6.10)
. (6.11)
Равенства (6.10) и (6.11) означают, что при ставке дисконтирования, равной IRR, современные стоимости потока инвестиций в проект и потока доходов совпадают.
2) Выясним, при каких условиях внутренняя норма доходности проекта r, т.е. значение показателя IRR, является среднегодовой доходностью этого проекта. Рассмотрим проект с дискретным потоком платежей, члены
NPV(r) = 1000 an,r – 1000 = 0.
, (6.18)

Свойства и экономическое содержание срока окупаемости.
1) Срок окупаемости – это время, необходимое для полной компенсации инвестиций в проект доходами от проекта. Это утверждение следует из определения срока окупаемости.
2) Если ставка дисконтирования равна внутренней норме доходности проекта IRR, то срок окупаемости проекта совпадает с его сроком, т.е. n * = T = n лет. Это утверждение следует из определения показателей IRR и DPP (см. также равенства (6.10), (6.11) и (6.16), (6.17)).
3) Срок окупаемости проекта n * — это срок действия проекта n * n, за который его чистая современная стоимость становится неотрицательной.
Для проекта с классической схемой инвестирования несложно убедиться, что с увеличением срока действия проекта, содержащего период отдачи, чистая современная стоимость проекта возрастает, начиная с отрицательных значений.
Из определения срока окупаемости, например, из (6.16) получаем
= 0 = NPV(i) за период n * , т.е.
NPVn*(i) = 0.
Аналогично из (6.18) и (6.19) имеем:
и ,
что означает NPV(i) за период n * , т.е.
N PVn*(i) . (6.20)
При сроке действия проекта (n * – 1) лет его NPVn*-1(i) * — наименьшее целое, при котором чистая современная стоимость проекта неотрицательна. Таким образом, если существует такой срок действия проекта n * n, за который его чистая современная стоимость становится неотрицательной, то его называют сроком окупаемости проекта.
принимается. Один из критериев оценки проекта – минимизация срока окупаемости. Однако этот критерий не является самым важным при выборе инвестиционного проекта. Расчет срока окупаемости является целесообразным, если инвестиции сопряжены с высокой степенью риска. Тогда чем меньше срок окупаемости, тем менее рискованным является проект.
Недостатком показателя DPP является то, что этот показатель не учитывает доходов за весь срок проекта. Следствием этого недостатка может быть неверная оценка проекта.
Пример 6.7. Рассмотрим два инвестиционных проекта, сроки которых одинаковы: D(-100,-10,20,60,60,60, 20,5) и E(-40,-50,-50,-20,90,90 ,80,70) , ставка дисконтирования 13 % годовых. Сроки окупаемости проектов = 5 лет и = 6 лет. NPV(i) D = 29,49 и NPV(i) E = 34,96. Оба проекта выгодны. Однако NPV(i) E > NPV(i) D . Сравним величины NFV(i) проектов. NFV(i) D = NPV(i) D (1+0,13) 7 = 69,38; NFV(i) E = NPV(i) E (1+0,13) 7 = 82,25. Несмотря на то, что t 16),
i = 5 % годовых:
= = 1,27.
Индекс доходности проекта B (-1000,-300,500,500,500,5 00), i = 5 % годовых:
= 1,31.
Индекс доходности проекта C (-90,30,40,40), i = 12 % годовых:
= 0,97.

Читать еще:  Инвестиционный калькулятор с капитализацией

Свойства и экономическое содержание индекса доходности.
1) Показатель PI характеризует уровень доходов на единицу затрат, т.е. эффективность вложений. d > 1 – доходы окупают вложенные инвестиции; d 1. Проект C – убыточный, так как его PI доходности проекта IRR, то индекс доходности проекта d = 1. Это утверждение следует из определений показателей IRR и PI (см. также равенства (6.16), (6.17) и (6.21), (6.22)).
3) Если срок проекта совпадает с его сроком окупаемости, то индекс доходности проекта d = 1. Это утверждение следует из определений показателей DPP и PI (см. также равенства (6.10), (6.11) и (6.21), (6.22)).
4) Показатели PI и NPV(i) согласуются между собой в оценке проекта. Действительно, преобразуем, например, выражение (6.22):
. (6.23)
Тогда
d > 1 тогда и только тогда, когда NPV(i) > 0;
d IRR, индекс формуле (2.2):
P(T) = P(0) ,
где P(0) = — современная стоимость инвестиций в проект по ставке i; P(T) = — результат реинвестирования доходов по проекту под ставку i к моменту T окончания проекта (будущая стоимость доходов по ставке i). r* называют модифицированной внутренней нормой доходности проекта (MIRR). Тогда
, (6.25)
где P(0) и P(T) рассчитываются по приведенным здесь формулам. По этому показателю проект принимается, если ставка дисконтирования проекта i 1 > NPV(i) 2 .
Пример 6.9. Инвестор рассматривает возможность помещения денег в один из следующих проектов. Проект F, по которому инвестирование 11000 д.е. обеспечивает годовой доход 600 д.е., выплачиваемых ежегодно на протяжении 15 лет, и возмещение расходов инвестора в конце этого срока. Проект G, по которому инвестирование 2000 д.е. обеспечивает годовой доход 2655 д.е., выплачиваемых ежегодно на протяжении 10 лет.
Инвестор может ссужать или занимать деньги под 5 % годовых. Какой проект является более выгодным для инвестора?
Денежный поток проекта F имеет вид: (-11000, 600,…, 600 + 11000). Поток доходов – годовая обычная рента в течение 15 лет плюс дополнительный платеж в конце этого срока. Тогда
NPV(i) F = -11000 + 600a15; 0,05 + = 518,98.
Показатель IRR находим из уравнения доходности проекта NPV(r) F = 0, откуда получаем IRR F = 5,45 % годовых.
Денежный поток проекта G имеет вид: (-2000, 2655, …, 2655). Поток доходов — годовая обычная рента в течение 10 лет.
NPV(i) G = -2000 + 2655a10; 0,05 = 501,21.
Решение уравнения доходности NPV(r) G = 0 дает IRR G = 5,51 % годовых.
Так как IRR F , IRR G > i = 5 %, то оба проекта выгодны. При этом IRR F G , однако NPV(i) F > NPV(i) G . Хотя доходность по проекту F меньше, чем по проекту G, инвестор может извлечь большую выгоду из проекта F. Прибыль инвестора (по сравнению с размещением денег на банковский счет) в результате реализации проекта F составит
NFV(i) F = NPV(i) F (1+0,05) 15 = 1078,93,
а проекта G соответственно
NFV(i) G = NPV(i) G (1+0,05) 15 = 1047,97.
Таким образом, проект F является более выгодным с точки зрения максимизации прибыли.

Ссылка на основную публикацию
Adblock
detector